
Problem Set 5
Advanced Statistical Mechanics

Deadline: Friday, 14 Khordad, 23:59

1 Stochastic Processes
1.1 Generalized Langevin Equation (GLE)
For a one dimensional system, by incorporating the effects of the fluid in Newton’s second
law one may write a Langevin equation of motion for the position x(t) of a particle of
mass m as a second order stochastic differential equation,

mẍ(t) = −γẋ(t) + F (x, t) + ξ(t) (1)

The random force is generated by a Gaussian white noise ξ(t), with average ⟨ξ(t)⟩ = 0
and correlation ⟨ξ(t′)ξ(x′′)⟩ = 2γkBTδ(t

′ − t′′). The prefactor of the dirac delta ensures
thermodynamic consistency according to the (second) fluctuation-dissipation theorem,
linking the drag coefficient γ of the dissipative term −γẋ to the strength of the noisy
term. As a deterministic force due to the fluid we focus on the case F (x, t) = ∂xU(x, t)
with a time-dependent potential energy U(x, t).

If the particle is immersed in a solution containing fro example long and complex poly-
mers, the above-mentioned separation of time scales in no longer possible and memory
effects occur. One may then consider a generalized Langevin equation with constant
diffusion coefficient. For t ≥ 0 this equation reads

mẍ(t) = −
∫ t

tm

dt′Γ(t− t′)ẋ(t′)− ∂xU(x, t) + η(t) (2)

where Γ(t) is the memory kernel, tm ≤ 0 is the time to which the memory effects extend
and η(t) is a colored Gaussian noise obeying ⟨η(t)⟩ = 0. The fluctuation-dissipation
relation is still valid in the more general form ⟨η(t′)η(t′′)⟩ = kBTΓ(|t′ − t′′|): thermody-
namic equilibrium is present in the medium if its two effects (dissipation and noise) are
proportional at all times.

The aim of this problem is to solve the GLE with a parabolic confinement potential
U(x, t) = κ

2 (x− λ(t))2, then

mẍ(t) = −
∫ t

tm

dt′Γ(t− t′)ẋ(t′)− κ(x(t)− λ(t)) + η(t) (3)
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Moreover, we will restrict ourselves to the case of a non-divergent time dependent effec-
tive friction coefficient γ̂(t), i.e. such that γ̂ = limt→∞ γ̂(t) = limt→∞

∫ t
0 dt

′Γ(t′) < ∞,
which is a sensible physical requirement.

One of the analytical solutions for the GLE is obtained with constant κ. Through
this approach, one may use Laplace transform. Our way to tackle this problem is to
introduce a modified Laplace transform with an arbitrary initial time tm ≤ 0 that acts
on a given function g(t) as follows

ĝ(k) = Lk(g(t)) =

∫ ∞

tm

dte−ktg(t) (4)

i) Show that the action of the modified Laplace transform on integrals is equal to the
action of the standard transform, namely

Lk

(∫ t

tm

dt′g(t′)

)
=

ĝ(k)

k
(5)

ii) By applying the Laplace transform to the GLE and by using the above result, calculate
the following equation

Lk(mẍ(t)) = Lk

(
−
∫ t

tm

dt′Γ(t− t′)ẋ(t′)− κ(x(t)− λ(t)) + η(t)

)
(6)

Now, we introduced the ”position susceptibility” Xx(t), defined via its Laplace transform

Xx(k) = (mk2 + kΓ̂(k) + κ)−1 (7)

By defining the inverse of the modified Laplace transform through the usual Bromwich
integral

g(t) =
1

2πi

∫ α+i∞

α−i∞
dkektĝ(s) (8)

where α is such that the chosen vertical contour in the complex plane has all the singu-
larities of g(s) on its left side, we see that L−1

k (e−ktm) = 2δ(t − tm) and L−1
k ( e

−ktm

k ) =
θ(t− tm), where θ(t) is the Heaviside step function.
iii) By transforming back equation that you have calculated in the previous part to real
time, show that for t > 0 ≥ tm,

x(t) = xtm(1− κX (t− tm)) +mvtmXx(t− tm) +

∫ t

tm

dt′Xx(t− t′)(κλ(t′) + η(t′)) (9)

Another important quantity we are interested in is the variance of the position at time t.
Given that system started at time tm with position xtm and velocity vtm , we have that⟨

∆2x
⟩
tm,t

=
⟨
(x(t)− ⟨x⟩tm,t)

2
⟩
tm,t

(10)
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iv) By using the previously obtained expression for the position and defining

ϕ(t) =

∫ t

tm

Xx(t− t′)η(t′)dt′ (11)

obtain an expression for
⟨
∆2x

⟩
tm,t

Hint: See arXiv:2005.04012 [cond-mat.stat-mech]

2 The Partition Function
2.1 Boltzmann Distribution
In this problem we try to review the Boltzmann’s 1877 paper which for the first time
established the probabilistic basis of entropy.

Suppose we have n molecules. Each of them is capable of having kinetic energies

0, ϵ, 2ϵ, · · · , pϵ (12)

and suppose these energies are distributed in all possible ways among the n molecules,
such that the total energy is a constant λϵ = L. Any such distribution, in which the
first molecule may have a kinetic energy of e.g., 2ϵ, the second may have 6ϵ, and so on,
up to the last molecule, we call a complexion. We seek the number P of complexions
where w0 molecules have kinetic energy 0, w1 molecules have kinetic energy ϵ, ω2 have
kinetic energy 2ϵ, up to the wp which have kinetic energy pϵ. Dividing the number P by
the number of all possible complexions, we get the probability of the state distribution.

The first task is to determine the permutation number, P, for any state distribution.
It must be understood that

w0 + w1 + w2 + · · ·+ wp = n (13)

w1 + 2w2 + 3w3 + · · ·+ pwp = λ (14)

i) Calculate the total number of permutations and show that it equals to

P =
n!

w0!w1! · · ·
(15)

The most likely state distribution with be for those wi values for which P is a maximum.
Since the denominator of P is a product, it is easiest to determine the minimum of its
logarithm, that is the minimum of

M = ln(w0!) + ln(w1!) + · · · (16)

It is a natural in our problem that only integer values of wi are meaningful. However to
apply differential calculus, we will allow non-integer values, and so find the minimum of
the expression

M = lnΓ(w0 + 1) + lnΓ(w1 + 1) + · · · (17)
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ii) By using Lagrange multipliers and the constraint equations show that

d ln Γ(w1 + 1)

dw1
− d ln Γ(w0 + 1)

dw0

=
d lnΓ(w2 + 1)

dw2
− d ln Γ(w1 + 1)

dw1

=
d lnΓ(w3 + 1)

dw3
− d ln Γ(w2 + 1)

dw2

(18)

Exact solution of the problem through evaluation of the gamma function integral is very
difficult; fortunately the general solution for arbitrary finite values of p and n does not
interest us here, but only the solution for the limiting case of larger and larger number of
molecules. Then the numbers wi become larger and larger, so we introduce the function

ϕ(x) = lnΓ(x+ 1)− x(lnx− 1)− 1

2
ln 2π (19)

ii) Show that we have

lnw1 +
dϕ(w1)

dw1
− lnw0 −

dϕ(w0)

dw0
= lnw2 +

dϕ(w2)

dw2
− lnw1 −

dϕ(w1)

dw1
(20)

and similarly for the other indexes. It is also well known that

ϕ(x) = −1

2
lnx+

1

12x
+ · · · (21)

This series is not valid for x = 0, but here x! and
√
2π(x/e)x should have the same value,

and ϕ(x) = 0.
Therefore the problem of finding the minimum of

∏
iwi! is replaced by the easier

problem of finding the minimum of ∏
i

√
2π

(wi

e

)wi

(22)

providing w is not zero, even at moderately large values of p and n both problems have
matching solutions.
iii) Show that

w2

w1
=

w3

w2
=

w4

w3
= · · · (23)

One sees immediately that the minimum of the denominator of
√
2π

(
n
e

)n∏
i

√
2π

(
wi
e

)wi
(24)

is found instead of the minimum of the denominator of P.
If we denote the common values of the quotient (23) by x we obtain

w1 = w0x, w2 = w0x
2, w3 = w0x

3, · · · (25)
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The two equation (13) and (14) become

w0(1 + x+ x2 + · · ·+ xp) = n (26)

w0(x+ 2x2 + 3x3 + · · ·+ pxp) = λ (27)
iv) By solving the above equation, show that we can obtain

w0 =
n2

n+ λ
, w1 =

n2λ

(n+ λ)2
, w3 =

n2λ2

(n+ λ)3
, · · · (28)

v) With some approximations, prove that

ws ≈
nϵ

µ
e
− ϵs

µ (29)

where µ = λϵ
n is equal to the average kinetic energy of a molecule.

Thus we obtain the Boltzmann’ distribution for a discrete case.
vi) Until now, the calculations are just for the discrete case. Do all of these procedures
for the continuous case.

2.2 General Properties of The Partition Function
Write an essay and summarize the 9th chapter of Huang’s book. (At least 5 pages)

2.3 Ideal Bose Gas
Derive with the help of the saddle point integration method a formula for the partition
function for an ideal Bose gas of N particles.

2.4 The Lee-Yang Theorem in Electrostatics
Show that the equation of state

P

kBT
=

∫ π

0
dθg(θ) log

(
1− 2z cos θ + z2

)
1

v
= 2z

∫ π

0
dθg(θ)

z − cos θ

1− 2z cos θ + z2

(30)

of the Lee-Yang lattice gas has the following electrostatic analog:
i) Consider a circular cylinder of unit radius perpendicular to the complex z plane,
cutting it at the unit circle. Suppose the cylinder is charged with a surface charge density
that depends only on the angle θ around the unit circle (with θ = 0 corresponding to
z = 1). The charge density (per unit area) is equal to g(θ), with g(θ) = g(−θ). Let ϕ(z)
and E(z) be, respectively, the electrostatic potential and the electric field at a point z
on the real axis. Then

P

kBT
= −1

2
ϕ(z)

n =
1

2
zE(z)

(31)
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where n = 1
v is the density.

ii) Assume g(0) ̸= 0. Show by electrostatic argument that P is continuous at z = 1, but
n jumps discontinuously. This shows that there is a first-order phase transition. Using
Gauss’s theorem in electrostatics, show the discontinuity in density is given by

∆n = 2πg(0) (32)

2.5 About the Grand Partition Function
Consider the grand partition function

Z(z, V ) = (1 + z)V (1 + zαV ) (33)

where α is a positive constant.
i) Write down the equation of state in a parametric form, eliminate z graphically, and
show that there is a first-order transition. Find the specific volumes of the two phases.
ii) Find the roots of Z(z, V ) = 0 in the complex z plane, at fixed V . Show that as
V → ∞ the roots converge toward the real axis at z = 1.
iii) Find the equation the phase-transition density fails to show any sign of the transi-
tion. This will demonstrate that the order of the operation z ∂

∂z and V → ∞ can be
interchanged only within a single-phase region.
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