
Problem Set 4
Advanced Statistical Mechanics

Deadline: Friday, 24 Ordibehesht, 23:59

1 Stochastic Processes
1.1 Fokker-Planck Equation
i) Consider a system of n particles of the same species where 0 ≤ n ≤ N . The state of
the system is characterize by n. We shall suppose that this system evolves by transition
n → n± 1 and we denote W±(n) the probability per unit time of such a transition. The
Master equation for the probability P (n, t) of finding n particles at time t is

∂P (n, t)

∂t
= (LP )(n, t) (1)

where

(LP )(n) = W+(n− 1)P (n− 1) +W−(n+ 1)P (n+ 1)− (W+(n) +W−(n))P (n) (2)

The usual approximation for large N , is the Fokker-Planck approximation. To obtain
this approximation, define a concentration variable and show that

∂p(x, t)

∂t
= − ∂

∂x
(A(x)p(x, t)) +

1

2N

∂2

∂x2
(D(x)p(x, t)) ≡ Rp (3)

where
A(x) = w+(x)− w−(x), D(x) = w+(x) + w−(x) (4)

Hint: See problem 6 (Set 3)
ii) Now suppose the Fokker-Planck equation for a diffusing particles moving with a
constant average velocity, is

∂p(x, t)

∂t
=

D

2

∂2p(x, t)

∂x2
−A

∂p(x, t)

∂x
(5)

Find the fundamental solution of this equation.
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1.2 Random Walk and Diffusion Equation
Let p(i,N) denote the probability that a random walker is at site i after N steps. Assume
that walker has an equal probability to walk one step left and right.
i) Use the master equation and show that

p(i,N) =
1

2
p(i+ 1, N − 1) +

1

2
p(i− 1, N − 1) (6)

ii) To obtain the continuum limit of this equation, define t = Nτ and x = ia, by assuming
that D = a2

2τ is finite in the limit τ → 0 and a → 0, show that p(x, t) satisfies the diffusion
equation,

∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
(7)

where D is the diffusion constant.
iii) Show that the solution of diffusion equation is given by a normal distribution.
iv) Show that the conditional probability distribution of the diffusion equation with
initial condition p(x′, t|x, t) = δ(x′ − x) is given by:

p(x′, t+ τ) =
1√

4πDτ
exp

{
−(x− x′)2

4Dτ

}
. (8)

v) Show that second statistical moment of x is given by⟨
x2(t)

⟩
= 2Dt (9)

1.3 Kramers-Moyal Equation
From the general Kramers-Moyal equation for the probability density p(x, t) derive the
following differential equations for the nth-order statistical moments of x

∂

∂t
⟨xn⟩ =

n∑
k=1

n!

(n− k)!

⟨
xn−kD(k)(x, t)

⟩
(10)

1.4 Backward Kramers-Moyal Equation
Starting from the following Chapman-Kolmogorov equation

p(x, t|x′, t′) =
∫

p(x, t|x”, t′ + τ)p(x”, t′ + τ |x′, t′)dx” (11)

with t ≥ t′+τ ≥ t′ i) Show that p(x, t|x′, t′) obey the following backward Kramers-Moyal
equation

∂p(x, t|x′, t′)
∂t′

= −
∞∑
n=1

D(n)(x′, t′)

(
∂

∂x′

)n

p(x, t|x′, t′) (12)
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ii) Show that the operator

L†
KM =

∞∑
n=1

D(n)(x′, t′)

(
∂

∂x′

)n

(13)

is the adjoint operator of

LKM =
∞∑
n=1

(
− ∂

∂x′

)n

D(n)(x′, t′) (14)

1.5 Pawula Theorem
Pawula theorem states that there are only three possible cases in the KM expansion:
(i) The Kramers-Moyal expansion is truncated at n = 1, meaning that the process is
deterministic, (ii) the KM expansion stops at n = 2, with the resulting equation being
the Fokker-Planck equation, and describes diffusion processes and, finally, (iii) The KM
expansion contains all the term up to n = ∞.

Show that any truncation of expansion at a finite n > 2 would produce non-positive
probability density p(x, t)

Hint: See the following paper: R.F. Pawula, Phys. Rev. 162, 186 (1967)

2 Kinetic Theory
2.1 One-Dimensional Gas
A thermalized gas particle is suddenly confined to a one-dimensional trap. The corre-
sponding mixed state is described by an initial density function ρ(q, p, t = 0) = δ(q)f(p),
where f(p) = exp

(
−p2/2mkBT

)
/
√
2πmkBT

i) Starting from Liouville’s equation, derive ρ(q, p, t) and sketch it in the (q, p) plan.
ii) Derive the expressions for the averages

⟨
q2
⟩

and
⟨
p2
⟩

at t > 0/
iii) Suppose that hard walls are placed at q = ±Q. Describe ρ(q, p, t ≫ τ), where τ an
appropriately large relaxation time.

2.2 Evolution of Entropy
The normalized ensemble density is a probability in the phase space Γ. This probability
has an associated entropy S(t) = −

∫
dΓρ(Γ, t) ln ρ(Γ, t).

i) Show that if ρ(Γ, t) satisfies Liouville’s equation for a Hamiltonian H, dS
dt = 0.

ii) Using the method of Lagrange multipliers, find the function ρmax(Γ) that maximizes
the functional S[ρ], subject to the constrains of fixed average energy, ⟨H⟩ =

∫
dΓρH = E.
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2.3 Vlasov Equation
The Vlasov equation is obtained in the limit of high particle density n = N

V , or large
inter-particle interaction range λ, such that nλ3 ≫ 1. In this limit, the collision terms
are dropped from the left-hand side of the equations in the BBGKY.

The BBGKY[
∂

∂t
+

s∑
n=1

pn

m
· ∂U

∂qn
−

s∑
n=1

(
∂U

∂qn
+
∑
l

∂V(qn − ql)

∂qn

)
· ∂

∂pn

]
fs

=
s∑

n=1

∫
dVs+1

∂V(qn − qs+1)

∂qn
· ∂fs+1

∂pn

(15)

has the characteristic time scales

1

τU
∼ ∂U

∂q
· ∂

∂p
∼ v

L
,

1

τU
∼ ∂V

∂q
· ∂

∂p
∼ v

λ
,

1

τ×

∑∫
dx

∂V
∂q

· ∂

∂p

fs+1

fs
∼ 1

τc
· nλ3

(16)

where nλ3 is the number of particles within the interaction range λ, and v is a typical
velocity. The Boltzmann equation is obtained in the dilute limit, nλ3 ≪ 1, by disre-
garding terms of the order 1

τ×
≪ 1

τc
. The Vlasov equation is obtained in the dense limit

of nλ3 ≫ 1 by ignoring terms of order 1
τc

≪ 1
τ×

.
i) Assume that the N -body density is a product of one-particle densities, that is,
ρ =

∏N
i=1 ρ1(xi, t), where xi ≡ (pi,qi). Calculate the densities fs, and their normaliza-

tions.
ii) Show that once the collision terms are eliminated, all the equations in the BBGKY
are equivalent to the single equation[

∂

∂t
+

p

m
· ∂

∂q
−

∂Ueff

∂q
· ∂

∂p

]
f1(p,q, t) = 0 (17)

where
Ueff (q, t) = U(q) +

∫
dx′V(q− q′)f1(x

′, t) (18)

iii) Now consider N particles confined to a box of volume V , with no additional potential.
Show that f1(q,p) =

g(p)
V is a stationary solution to the Vlasov equation for any g(p).

Why is there no relaxation toward equilibrium for g(p)?

2.4 Two-Component Plasma
Consider a neutral mixture of N ions of charge +e and mass m+, and N electrons of
charge −e and mass m−, in a volume V = N

n0
.
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i) Show that the Vlasov equations for this two-component system are[
∂

∂t
+

p

m+
· ∂

∂q
+ e

∂Φeff

∂q
· ∂

∂p

]
f+(p,q, t) = 0[

∂

∂t
+

p

m+
· ∂

∂q
− e

∂Φeff

∂q
· ∂

∂p

]
f−(p,q, t) = 0

(19)

where the effective Coulomb potential is given by

Φeff (q, t) = Φext(q) + e

∫
dx′C(q− q′)[f+(x

′, t)− f−(x
′, t)] (20)

Here, Φext is the potential set up by the external charges, and the Coulomb potential
C(q) satisfies the differential equation ∇2C = 4πδ3(q).
ii) Assume that the one-particle densities have the stationary forms f± = g±(p)n±(q).
Show that the effective potential satisfies the equation

∇2Φeff = 4πρext + 4πe(n+(q)− n−(q)), (21)

where ρext is the external charge density.
iii) Further assuming that the densities relax to the equilibrium Boltzmann weights
n±(q) = n0 exp[±βeΦeff (q)] leads to the self-consistency condition

∇2Φeff = 4π[ρext + n0e(e
βeϕeff − e−βeϕeff )], (22)

known as the Poisson-Boltzmann equation. Due to its non-linear form, it is generally
not possible to solve the Poisson-Boltzmann equation. By linearizing the exponentials,
one obtain the simpler Debye equation

∇2Φeff = 4πρext +Φeff/λ
2. (23)

Give the expression for the Debye screening length λ.
iv) Show that the Debye equation has the general solution

Φeff (q) =

∫
d3qG(q− q′)ρext(q

′), (24)

where G(q) = exp(−|q|/λ)/|q| is the screened Coulomb potential.
v) Give the condition for the self-consistency of the Vlasov approximation, and interpret
it in terms of the inter-particle spacing.
vi) Show that the characteristic relaxation time (τ ≈ λ/ ̌ is temperature-independent.
What property of the plasma is it related to?
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