Problem Set 4

Advanced Statistical Mechanics

Deadline: Friday, 24 Ordibehesht, 23:59

1 Stochastic Processes

1.1 Fokker-Planck Equation

i) Consider a system of n particles of the same species where $0 \leq n \leq N$. The state of the system is characterize by n. We shall suppose that this system evolves by transition $n \rightarrow n \pm 1$ and we denote $W_{ \pm}(n)$ the probability per unit time of such a transition. The Master equation for the probability $P(n, t)$ of finding n particles at time t is

$$
\begin{equation*}
\frac{\partial P(n, t)}{\partial t}=(\mathcal{L} P)(n, t) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
(\mathcal{L} P)(n)=W_{+}(n-1) P(n-1)+W_{-}(n+1) P(n+1)-\left(W_{+}(n)+W_{-}(n)\right) P(n) \tag{2}
\end{equation*}
$$

The usual approximation for large N, is the Fokker-Planck approximation. To obtain this approximation, define a concentration variable and show that

$$
\begin{equation*}
\frac{\partial p(x, t)}{\partial t}=-\frac{\partial}{\partial x}(A(x) p(x, t))+\frac{1}{2 N} \frac{\partial^{2}}{\partial x^{2}}(D(x) p(x, t)) \equiv R_{p} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
A(x)=w_{+}(x)-w_{-}(x), \quad D(x)=w_{+}(x)+w_{-}(x) \tag{4}
\end{equation*}
$$

Hint: See problem 6 (Set 3)
ii) Now suppose the Fokker-Planck equation for a diffusing particles moving with a constant average velocity, is

$$
\begin{equation*}
\frac{\partial p(x, t)}{\partial t}=\frac{D}{2} \frac{\partial^{2} p(x, t)}{\partial x^{2}}-A \frac{\partial p(x, t)}{\partial x} \tag{5}
\end{equation*}
$$

Find the fundamental solution of this equation.

1.2 Random Walk and Diffusion Equation

Let $p(i, N)$ denote the probability that a random walker is at site i after N steps. Assume that walker has an equal probability to walk one step left and right.
i) Use the master equation and show that

$$
\begin{equation*}
p(i, N)=\frac{1}{2} p(i+1, N-1)+\frac{1}{2} p(i-1, N-1) \tag{6}
\end{equation*}
$$

ii) To obtain the continuum limit of this equation, define $t=N \tau$ and $x=i a$, by assuming that $D=\frac{a^{2}}{2 \tau}$ is finite in the limit $\tau \rightarrow 0$ and $a \rightarrow 0$, show that $p(x, t)$ satisfies the diffusion equation,

$$
\begin{equation*}
\frac{\partial p(x, t)}{\partial t}=D \frac{\partial^{2} p(x, t)}{\partial x^{2}} \tag{7}
\end{equation*}
$$

where D is the diffusion constant.
iii) Show that the solution of diffusion equation is given by a normal distribution.
iv) Show that the conditional probability distribution of the diffusion equation with initial condition $p\left(x^{\prime}, t \mid x, t\right)=\delta\left(x^{\prime}-x\right)$ is given by:

$$
\begin{equation*}
p\left(x^{\prime}, t+\tau\right)=\frac{1}{\sqrt{4 \pi D \tau}} \exp \left\{-\frac{\left(x-x^{\prime}\right)^{2}}{4 D \tau}\right\} \tag{8}
\end{equation*}
$$

v) Show that second statistical moment of x is given by

$$
\begin{equation*}
\left\langle x^{2}(t)\right\rangle=2 D t \tag{9}
\end{equation*}
$$

1.3 Kramers-Moyal Equation

From the general Kramers-Moyal equation for the probability density $p(x, t)$ derive the following differential equations for the n th-order statistical moments of x

$$
\begin{equation*}
\frac{\partial}{\partial t}\left\langle x^{n}\right\rangle=\sum_{k=1}^{n} \frac{n!}{(n-k)!}\left\langle x^{n-k} D^{(k)}(x, t)\right\rangle \tag{10}
\end{equation*}
$$

1.4 Backward Kramers-Moyal Equation

Starting from the following Chapman-Kolmogorov equation

$$
\begin{equation*}
p\left(x, t \mid x^{\prime}, t^{\prime}\right)=\int p\left(x, t \mid x ", t^{\prime}+\tau\right) p\left(x^{\prime \prime}, t^{\prime}+\tau \mid x^{\prime}, t^{\prime}\right) d x " \tag{11}
\end{equation*}
$$

with $t \geq t^{\prime}+\tau \geq t^{\prime}$ i) Show that $p\left(x, t \mid x^{\prime}, t^{\prime}\right)$ obey the following backward Kramers-Moyal equation

$$
\begin{equation*}
\frac{\partial p\left(x, t \mid x^{\prime}, t^{\prime}\right)}{\partial t^{\prime}}=-\sum_{n=1}^{\infty} D^{(n)}\left(x^{\prime}, t^{\prime}\right)\left(\frac{\partial}{\partial x^{\prime}}\right)^{n} p\left(x, t \mid x^{\prime}, t^{\prime}\right) \tag{12}
\end{equation*}
$$

ii) Show that the operator

$$
\begin{equation*}
\mathcal{L}_{K M}^{\dagger}=\sum_{n=1}^{\infty} D^{(n)}\left(x^{\prime}, t^{\prime}\right)\left(\frac{\partial}{\partial x^{\prime}}\right)^{n} \tag{13}
\end{equation*}
$$

is the adjoint operator of

$$
\begin{equation*}
\mathcal{L}_{K M}=\sum_{n=1}^{\infty}\left(-\frac{\partial}{\partial x^{\prime}}\right)^{n} D^{(n)}\left(x^{\prime}, t^{\prime}\right) \tag{14}
\end{equation*}
$$

1.5 Pawula Theorem

Pawula theorem states that there are only three possible cases in the KM expansion: (i) The Kramers-Moyal expansion is truncated at $n=1$, meaning that the process is deterministic, (ii) the KM expansion stops at $n=2$, with the resulting equation being the Fokker-Planck equation, and describes diffusion processes and, finally, (iii) The KM expansion contains all the term up to $n=\infty$.

Show that any truncation of expansion at a finite $n>2$ would produce non-positive probability density $p(x, t)$

Hint: See the following paper: R.F. Pawula, Phys. Rev. 162, 186 (1967)

2 Kinetic Theory

2.1 One-Dimensional Gas

A thermalized gas particle is suddenly confined to a one-dimensional trap. The corresponding mixed state is described by an initial density function $\rho(q, p, t=0)=\delta(q) f(p)$, where $f(p)=\exp \left(-p^{2} / 2 m k_{B} T\right) / \sqrt{2 \pi m k_{B} T}$
i) Starting from Liouville's equation, derive $\rho(q, p, t)$ and sketch it in the (q, p) plan.
ii) Derive the expressions for the averages $\left\langle q^{2}\right\rangle$ and $\left\langle p^{2}\right\rangle$ at $t>0$ /
iii) Suppose that hard walls are placed at $q= \pm Q$. Describe $\rho(q, p, t \gg \tau)$, where τ an appropriately large relaxation time.

2.2 Evolution of Entropy

The normalized ensemble density is a probability in the phase space Γ. This probability has an associated entropy $S(t)=-\int d \Gamma \rho(\Gamma, t) \ln \rho(\Gamma, t)$.
i) Show that if $\rho(\Gamma, t)$ satisfies Liouville's equation for a Hamiltonian $\mathcal{H}, \frac{\mathrm{d} S}{\mathrm{~d} t}=0$.
ii) Using the method of Lagrange multipliers, find the function $\rho_{\max }(\Gamma)$ that maximizes the functional $S[\rho]$, subject to the constrains of fixed average energy, $\langle H\rangle=\int d \Gamma \rho \mathcal{H}=E$.

2.3 Vlasov Equation

The Vlasov equation is obtained in the limit of high particle density $n=\frac{N}{V}$, or large inter-particle interaction range λ, such that $n \lambda^{3} \gg 1$. In this limit, the collision terms are dropped from the left-hand side of the equations in the BBGKY.

The BBGKY

$$
\begin{array}{r}
{\left[\frac{\partial}{\partial t}+\sum_{n=1}^{s} \frac{\mathbf{p}_{n}}{m} \cdot \frac{\partial U}{\partial \mathbf{q}_{n}}-\sum_{n=1}^{s}\left(\frac{\partial U}{\partial \mathbf{q}_{n}}+\sum_{l} \frac{\partial \mathcal{V}\left(\mathbf{q}_{n}-\mathbf{q}_{l}\right)}{\partial \mathbf{q}_{n}}\right) \cdot \frac{\partial}{\partial \mathbf{p}_{n}}\right] f_{s}} \tag{15}\\
=\sum_{n=1}^{s} \int d V_{s+1} \frac{\partial \mathcal{V}\left(\mathbf{q}_{n}-\mathbf{q}_{s+1}\right)}{\partial \mathbf{q}_{n}} \cdot \frac{\partial f_{s+1}}{\partial \mathbf{p}_{n}}
\end{array}
$$

has the characteristic time scales

$$
\begin{align*}
& \frac{1}{\tau_{U}} \sim \frac{\partial U}{\partial \mathbf{q}} \cdot \frac{\partial}{\partial \mathbf{p}} \sim \frac{v}{L} \\
& \frac{1}{\tau_{U}} \sim \frac{\partial \mathcal{V}}{\partial \mathbf{q}} \cdot \frac{\partial}{\partial \mathbf{p}} \sim \frac{v}{\lambda} \tag{16}\\
& \frac{1}{\tau_{\times}} \sum \int d x \frac{\partial \mathcal{V}}{\partial \mathbf{q}} \cdot \frac{\partial}{\partial \mathbf{p}} \frac{f_{s+1}}{f_{s}} \sim \frac{1}{\tau_{c}} \cdot n \lambda^{3}
\end{align*}
$$

where $n \lambda^{3}$ is the number of particles within the interaction range λ, and v is a typical velocity. The Boltzmann equation is obtained in the dilute limit, $n \lambda^{3} \ll 1$, by disregarding terms of the order $\frac{1}{\tau_{\times}} \ll \frac{1}{\tau_{c}}$. The Vlasov equation is obtained in the dense limit of $n \lambda^{3} \gg 1$ by ignoring terms of order $\frac{1}{\tau_{c}} \ll \frac{1}{\tau_{\times}}$.
i) Assume that the N-body density is a product of one-particle densities, that is, $\rho=\prod_{i=1}^{N} \rho_{1}\left(\mathbf{x}_{i}, t\right)$, where $\mathbf{x}_{i} \equiv\left(\mathbf{p}_{i}, \mathbf{q}_{i}\right)$. Calculate the densities f_{s}, and their normalizations.
ii) Show that once the collision terms are eliminated, all the equations in the BBGKY are equivalent to the single equation

$$
\begin{equation*}
\left[\frac{\partial}{\partial t}+\frac{\mathbf{p}}{m} \cdot \frac{\partial}{\partial \mathbf{q}}-\frac{\partial U_{e f f}}{\partial \mathbf{q}} \cdot \frac{\partial}{\partial \mathbf{p}}\right] f_{1}(\mathbf{p}, \mathbf{q}, t)=0 \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{e f f}(\mathbf{q}, t)=U(\mathbf{q})+\int d \mathbf{x}^{\prime} \mathcal{V}\left(\mathbf{q}-\mathbf{q}^{\prime}\right) f_{1}\left(\mathbf{x}^{\prime}, t\right) \tag{18}
\end{equation*}
$$

iii) Now consider N particles confined to a box of volume V, with no additional potential. Show that $f_{1}(\mathbf{q}, \mathbf{p})=\frac{g(\mathbf{p})}{V}$ is a stationary solution to the Vlasov equation for any $g(\mathbf{p})$. Why is there no relaxation toward equilibrium for $g(\mathbf{p})$?

2.4 Two-Component Plasma

Consider a neutral mixture of N ions of charge $+e$ and mass m_{+}, and N electrons of charge $-e$ and mass m_{-}, in a volume $V=\frac{N}{n_{0}}$.
i) Show that the Vlasov equations for this two-component system are

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}+\frac{\mathbf{p}}{m_{+}} \cdot \frac{\partial}{\partial \mathbf{q}}+e \frac{\partial \Phi_{e f f}}{\partial \mathbf{q}} \cdot \frac{\partial}{\partial \mathbf{p}}\right] f_{+}(\mathbf{p}, \mathbf{q}, t)=0} \\
& {\left[\frac{\partial}{\partial t}+\frac{\mathbf{p}}{m_{+}} \cdot \frac{\partial}{\partial \mathbf{q}}-e \frac{\partial \Phi_{e f f}}{\partial \mathbf{q}} \cdot \frac{\partial}{\partial \mathbf{p}}\right] f_{-}(\mathbf{p}, \mathbf{q}, t)=0} \tag{19}
\end{align*}
$$

where the effective Coulomb potential is given by

$$
\begin{equation*}
\Phi_{e f f}(\mathbf{q}, t)=\Phi_{e x t}(\mathbf{q})+e \int d \mathbf{x}^{\prime} C\left(\mathbf{q}-\mathbf{q}^{\prime}\right)\left[f_{+}\left(\mathbf{x}^{\prime}, t\right)-f_{-}\left(\mathbf{x}^{\prime}, t\right)\right] \tag{20}
\end{equation*}
$$

Here, $\Phi_{\text {ext }}$ is the potential set up by the external charges, and the Coulomb potential $C(\mathbf{q})$ satisfies the differential equation $\nabla^{2} C=4 \pi \delta^{3}(\mathbf{q})$.
ii) Assume that the one-particle densities have the stationary forms $f_{ \pm}=g_{ \pm}(\mathbf{p}) n_{ \pm}(\mathbf{q})$. Show that the effective potential satisfies the equation

$$
\begin{equation*}
\nabla^{2} \Phi_{e f f}=4 \pi \rho_{e x t}+4 \pi e\left(n_{+}(\mathbf{q})-n_{-}(\mathbf{q})\right) \tag{21}
\end{equation*}
$$

where $\rho_{\text {ext }}$ is the external charge density.
iii) Further assuming that the densities relax to the equilibrium Boltzmann weights $n_{ \pm}(\mathbf{q})=n_{0} \exp \left[\pm \beta e \Phi_{e f f}(\mathbf{q})\right]$ leads to the self-consistency condition

$$
\begin{equation*}
\nabla^{2} \Phi_{e f f}=4 \pi\left[\rho_{e x t}+n_{0} e\left(e^{\beta e \phi_{e f f}}-e^{-\beta e \phi_{e f f}}\right)\right] \tag{22}
\end{equation*}
$$

known as the Poisson-Boltzmann equation. Due to its non-linear form, it is generally not possible to solve the Poisson-Boltzmann equation. By linearizing the exponentials, one obtain the simpler Debye equation

$$
\begin{equation*}
\nabla^{2} \Phi_{e f f}=4 \pi \rho_{e x t}+\Phi_{e f f} / \lambda^{2} \tag{23}
\end{equation*}
$$

Give the expression for the Debye screening length λ.
iv) Show that the Debye equation has the general solution

$$
\begin{equation*}
\Phi_{e f f}(\mathbf{q})=\int d^{3} \mathbf{q} G\left(\mathbf{q}-\mathbf{q}^{\prime}\right) \rho_{e x t}\left(\mathbf{q}^{\prime}\right) \tag{24}
\end{equation*}
$$

where $G(\mathbf{q})=\exp (-|\mathbf{q}| / \lambda) /|\mathbf{q}|$ is the screened Coulomb potential.
v) Give the condition for the self-consistency of the Vlasov approximation, and interpret it in terms of the inter-particle spacing.
vi) Show that the characteristic relaxation time ($\tau \approx \lambda y$ is temperature-independent. What property of the plasma is it related to?

