Problem Set 4

Advanced Statistical Mechanics

Deadline: Friday, 24 Ordibehesht, 23:59

1 Stochastic Processes

1.1 Fokker-Planck Equation

i) Consider a system of n particles of the same species where 0 < n < N. The state of
the system is characterize by n. We shall suppose that this system evolves by transition
n — n =+ 1 and we denote Wi (n) the probability per unit time of such a transition. The
Master equation for the probability P(n,t) of finding n particles at time ¢ is

OP(n,t)

s = (LP)(n) 1)

where
(LP)(n)=Wi(n—1)P(n—1)+W_(n+1)P(n+1) — (Wy(n)+W_(n))P(n) (2)

The usual approximation for large N, is the Fokker-Planck approximation. To obtain
this approximation, define a concentration variable and show that

T 2
WD _ 0 (Aol ) + i oy (D)ol 1) = Ry 0
where
Aw) = wy (@) —w_ (), D(a) = wy(a) +w_(2) (@)

Hint: See problem 6 (Set 3)
ii) Now suppose the Fokker-Planck equation for a diffusing particles moving with a
constant average velocity, is

p(w,t) _ DPplx,t) , Ip(w,t)
ot 2 a2 Ox

()

Find the fundamental solution of this equation.



1.2 Random Walk and Diffusion Equation

Let p(i, N') denote the probability that a random walker is at site ¢ after N steps. Assume
that walker has an equal probability to walk one step left and right.
i) Use the master equation and show that

p(i, N) = %p(i—i—l,N—l)—i—%p(i—l,N—l) (6)

ii) To obtain the continuum limit of this equation, define t = N7 and = = ia, by assuming
that D = % is finite in the limit 7 — 0 and @ — 0, show that p(z, t) satisfies the diffusion
equation,
op(x,t O%*p(x,t
pla,t) _ 0n(et) -
ot 0x?

where D is the diffusion constant.

iii) Show that the solution of diffusion equation is given by a normal distribution.

iv) Show that the conditional probability distribution of the diffusion equation with
initial condition p(2’,t|z,t) = §(a’ — z) is given by:

x—12')?
pla’ t+71) = \/éhlriDTeXp{_(ﬁlDT)}' (8)

v) Show that second statistical moment of z is given by

(#*()) = 2Dt (9)

1.3 Kramers-Moyal Equation

From the general Kramers-Moyal equation for the probability density p(z,t) derive the
following differential equations for the nth-order statistical moments of x

O =3 (nﬁ'k)' (x" W (z,1)) (10)

k=1

1.4 Backward Kramers-Moyal Equation

Starting from the following Chapman-Kolmogorov equation
ot t) = [ plastla” ¢ 4+ 7)pla” ¥ 4l ¢)da” ()

with ¢t > ¢'+7 > t' i) Show that p(z, t|2’,t") obey the following backward Kramers-Moyal
equation

op(z, t|la’, = n 9 \"
p(ﬁt"> =-) D! (@, ) <8$,> p(,tl2’, ) (12)

n=1



ii) Show that the operator

oo . 8 n
=S 000) (2) "
n=1

is the adjoint operator of
o a n .
Lrxm = Z <_3x/> DM (¢ (14)

1.5 Pawula Theorem

Pawula theorem states that there are only three possible cases in the KM expansion:
(i) The Kramers-Moyal expansion is truncated at n = 1, meaning that the process is
deterministic, (ii) the KM expansion stops at n = 2, with the resulting equation being
the Fokker-Planck equation, and describes diffusion processes and, finally, (iii) The KM
expansion contains all the term up to n = oc.

Show that any truncation of expansion at a finite n > 2 would produce non-positive
probability density p(z,t)

Hint: See the following paper: R.F. Pawula, Phys. Rev. 162, 186 (1967)

2 Kinetic Theory

2.1 One-Dimensional Gas

A thermalized gas particle is suddenly confined to a one-dimensional trap. The corre-
sponding mixed state is described by an initial density function p(q,p,t = 0) = 6(q) f(p),
where f(p) = exp(—p?/2mkpT) /v 2amkpT

i) Starting from Liouville’s equation, derive p(q, p,t) and sketch it in the (¢, p) plan.

ii) Derive the expressions for the averages <q2> and <p2> att >0/

iii) Suppose that hard walls are placed at ¢ = +@Q. Describe p(q,p,t > 7), where 7 an
appropriately large relaxation time.

2.2 Evolution of Entropy

The normalized ensemble density is a probability in the phase space I'. This probability
has an associated entropy S(t) = — [ dLp(T,t)In p(T, t).

i) Show that if p(I',¢) satisfies Liouville’s equation for a Hamiltonian H, 42 = 0.

ii) Using the method of Lagrange multipliers, find the function pp,..(I") that maximizes
the functional S[p], subject to the constrains of fixed average energy, (H) = [ dl'pH = E.



2.3 Vlasov Equation

The Vlasov equation is obtained in the limit of high particle density n = %, or large
inter-particle interaction range \, such that nA3 > 1. In this limit, the collision terms
are dropped from the left-hand side of the equations in the BBGKY.

The BBGKY
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where nA3 is the number of particles within the interaction range ), and v is a typical
velocity. The Boltzmann equation is obtained in the dilute limit, nA? < 1, by disre-
garding terms of the order % < %C The Vlasov equation is obtained in the dense limit
of nA3 > 1 by ignoring terms of order T—lc < %
i) Assume that the N-body density is a product of one-particle densities, that is,
p= Hl]\il p1(xi,t), where x; = (p;,q;). Calculate the densities f,, and their normaliza-
tions.

ii) Show that once the collision terms are eliminated, all the equations in the BBGKY
are equivalent to the single equation

9. P OUess . O
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} fi(p,q,t) =0 (17)

where

mﬁ@w—mm+/wwm—wﬁww (18)

iii) Now consider N particles confined to a box of volume V| with no additional potential.

Show that fi(q,p) = @ is a stationary solution to the Vlasov equation for any g(p).
Why is there no relaxation toward equilibrium for g(p)?

2.4 Two-Component Plasma

Consider a neutral mixture of N ions of charge +e and mass my, and N electrons of

charge —e and mass m_, in a volume V = %



i) Show that the Vlasov equations for this two-component system are
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where the effective Coulomb potential is given by
Burp(a.t) = Ben@) +e [ dXCla—a)lf () — (1) (20)

Here, ®.,; is the potential set up by the external charges, and the Coulomb potential
C(q) satisfies the differential equation V2C = 4763(q).
ii) Assume that the one-particle densities have the stationary forms fi = g+(p)ns(q).
Show that the effective potential satisfies the equation

v2(I>eff = A7 pert + dme(ny(q) — n-(q)), (21)

where pey: is the external charge density.
iii) Further assuming that the densities relax to the equilibrium Boltzmann weights
n+(q) = ng exp[£LePcsr(q)] leads to the self-consistency condition

V2i>€ff = 47 [pest + noe(eﬁed’ﬁff - e‘/Be‘z’eff)], (22)

known as the Poisson-Boltzmann equation. Due to its non-linear form, it is generally
not possible to solve the Poisson-Boltzmann equation. By linearizing the exponentials,
one obtain the simpler Debye equation

V2B pp = AT pegt + Pepr /N2 (23)

Give the expression for the Debye screening length A.
iv) Show that the Debye equation has the general solution

Perr(q) = / *qG(a — q')peat(d’), (24)

where G(q) = exp(—|q|/A)/|q| is the screened Coulomb potential.

v) Give the condition for the self-consistency of the Vlasov approximation, and interpret
it in terms of the inter-particle spacing.

vi) Show that the characteristic relaxation time (7 ~ A/ is temperature-independent.
What property of the plasma is it related to?



