
Problem Set 3
Advanced Statistical Mechanics

Deadline: Friday, 3 Ordibehesht, 23:59

1 Stochastic Processes
1.1 Rabbit Evolution
Consider an experiment of mating rabbits. We watch the evolution of a particular gene
that appears in two types, G or g. A rabbit has a pair of genes, either GG (dominant),
Gg (hybrid-the order is irrelevant, so gG is the same as Gg) or gg (recessive). In mating
two rabbits, the offspring inherits a genre from each of its parents with equal probability.
Thus, if we mate a dominant (GG) with a hybrid (Gg), the offspring is dominant with
probability 1/2 or hybrid with probability 1/2.

Start with a rabbit of given character (GG, Gg, or gg) and mate it with a hybrid. The
offspring produced is again mated with a hybrid, and the process is repeated through a
number of generations, always mating with a hybrid.
(i) Write down the transition probabilities of the Markov chain thus defined.
(ii) Assume that we start with a hybrid rabbit. Let µn be the probability distribution of
the character of the rabbit of the n-th generation rabbit is GG, Gg, or gg, respectively.
Compute µ1, µ2, µ3. Can you do the same for µn for general n?

1.2 Knight’s Tour
Consider the knight’s tour on a chess board: A knight selects one of the next positions
at random independently of the past.
(i) Why is this process a Markov chain?
(ii) What is the state space?
(iii) Is it irreducible? Is it aperiodic?
(iv) Find the stationary distribution. Give an interpretation of it: what does it mean,
physically?
(v) Which are the most likely states in steady-state? Which are the least likely ones?

1.3 Colored balls
Five with balls and five black balls are distributed in two urns is such a way that each
urn contain five balls. At each step we draw one ball from each urn and exchange them.
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Let Xn be the number of white balls in the left urn at time n.
(i) Compute the transition probability for Xn

(ii) Find the stationary distribution and show that it corresponds to picking five balls
at random to be in the left urn.

1.4 Transition Matrix
(i) Consider a homogeneous Markov chain with transition matrix

q1 p1 0 0 0 · · ·
q2 0 p2 0 0 · · ·
q3 0 0 p3 0 · · ·
...

...
...

...
... . . .

 (1)

where pi = 1 − qi and pi, qi ≥ 0, i ∈ N. The chain is irreducible if 0 < pi < 1 for all
i ∈ N. Find the necessary and sufficient conditions for transience positive recurrence,
null recurrence respectively.
(ii) Consider a homogeneous Markov chain with state space S = {1, · · · , n} and transi-
tion matrix 

q p 0 0 0 · · · 0
q 0 p 0 0 · · · 0
0 q 0 p 0 · · · 0
...

...
...

... . . . ...
...

0 · · · 0 0 q 0 p
0 · · · 0 0 0 q p


(2)

Show that the chain is positive and find the stationary initial distribution.

1.5 Random Walk
Consider an asymmetric random walk on an open-ended lattice with four lattice sites.
The transition rates are w1,2 = w4,3 = 1, w2,3 = w3,4 =

3
4 , w2,1 = w3,2 =

1
4 , and wi,j = 0

for all other transitions.
(i) Write the transition matrix, Wm,n, and show that the system obeys detailed balance.
(ii) Compute the matrix Vm,n and find its eigenvalues and eigenvectors.
(iii) Write P1(n, t) = δn,1. What is P1(2, t)

1.6 Birth and Death Processes
An important class of master equations respond to the birth and death scheme. Let us
assume that particles of a system can be in the state X or Y . For instance, we could
think of a person who is either sane or ill. The rates of going from X to Y is ω1 while
the rate from Y to X is ω2. Recall that both rates ω1 and ω2 are independent of each
other.

Let n1 be the number of particles in the state X while n2 is the number of particles
in the state Y . The total number of particles is N = n1 + n2, constant.
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(i) Write a master equation for the probability P (n; t) of having n particles in state X.
(ii) Now we need to solve this master equation. So by using the generating function
G(s, t), rewrite the equation.
(iii) If initially there are no ”life” particles, then calculate G(s, t)
(iv) Calculate the evolution of the average number of particles and their variance.

1.7 LGKS Equation
In general the dynamics of the reduced system defined by the exact equations

ρS(t) = trB(U(t, t0)ρ(t0)U
†(t, t0) (3)

and
d

dt
ρS(t) = − i

ℏ
trB[H(t), ρ(t)] (4)

will be quite involved. However, under the condition of short environmental correlation
times one may neglect memory effects and formulate the reduced system dynamics in
terms of a quantum dynamics semigroup.

Let us suppose that we are able to prepare at the initial time t = 0 the state of the
total system S + B as an uncorrelated product state ρ(0) = ρS(0) ⊗ ρB, where ρS is
the initial state of the reduced system S and ρB represents some reference state of the
environment, a thermal equilibrium, for example. The transformation describing the
change of the reduced system from the initial time t = 0 for some t > 0 may then be
written in the form

ρS(0) → ρS(t)V (t)ρS(0) ≡ trB(U(t, 0)[ρS(0), ρB]U
†(t, 0)) (5)

If we regard the reference state ρB and the final time to be fixed, this relation defines a
map from the space D(HS) of density operator of the reduced system into self,

V (t) : D(HS) → D(HS) (6)

This map, describing the state change of the open system over time t, is called a dynam-
ical map. If the characteristic time scales over which the reservoir correlation functions
decay are much smaller than the characteristic time scale of the systematic system evo-
lution, it is justified to neglect memory effects in the reduced system dynamics. As in
the classical theory one thus expects Markovian-type behavior. For the homogeneous
case the latter may be formalized with the help of the semigroup property:

V (t1)V (t2) = V (t1 + t2), t1, t2 > 0 (7)

Given a quantum dynamical semigroup there exists, under certain mathematical condi-
tions, a linear map L, the generator of the semigroup, which allows us to represent the
semigroup in exponential form,

V (t) = exp(Lt) (8)
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This representation immediately yields a first-order differential equation for the reduced
density operator for the open system,

d

dt
ρs(t) = LρS(t) (9)

which is called the Markovian quantum master equation.
Show that the most general form of the generator L of a quantum dynamical semigroup

is
LρS = − i

ℏ
[H, ρS ] +

∑
k

γk

(
AkρSA

†
k −

1

2
{A†

kAk, ρS}
)

(10)

which is called LGKS equation.
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