
Problem Set 1
Advanced Statistical Mechanics

Deadline: Tuesday, 19 Esfand, 23:59

1 Classical Thermodynamics
1.1 Entropy of Mixing
Calculate the entropy of mixing of two volumes VA and VB of an ideal gas of species A
and B, respectively, both initially at the same temperature T and pressure P and, with
a final volume V = VA + VB

1.2 Photon Gas Carnot Cycle
The aim of this problem is to obtain the black-body radiation relation, E(T, V ) ∝ V T 4,
starting from the equation of state, by performing an infinitesimal Carnot cycle on the
photon gas.

Figure 1: PV Diagram

(a) Express the work done, W , in the above cycle, in terms of dV and dP .
(b) Express the heat absorbed, Q, in expanding the gas along an isotherm, in terms of
P, dV , and an appropriate derivative of E(T, V ).
(c) Using the efficiency of the Carnot cycle, relate the above expression for W and W
to T and dT .
(d) Observations indicates that the pressure of the photon gas is given by P = AT 4,
where A = π2k2B/45(h̄c)

3 is a constant. Use this information to obtain E(T, V ), assuming
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E(0, V ) = 0.
(e) Find the relation describing the adiabatic paths in the above cycle.

1.3 Maximum Entropy Principle
Entropy has the maximum value it can have consistent with constraints on the system, an
extremum principle characterizing equilibrium. Because of the randomness of molecular
motions, fluctuation in state variables occur about their equilibrium values. Equilibrium
must be stable against fluctuation.

To do so, we make use of an oft-used theoretical device in thermodynamics, that of
the composite system which consists of subsystem A and B, in contact with each other,
surrounded by rigid adiabatic walls. Let A and B be separated by a partition that is
moveable, permeable, and diathermic.
(a) The subsystems can exchange volume, particle and energy. they’re also assumed to
contain the same type of particles. Show the relation between δVA, δVB, δNA, δNB,
δUA and δUB.

We consider the change in total system entropy ∆S under these variations to first and
second order in small quantities, what we denote by ∆S = δS+ 1

2δ
2S, where S = SA+SB

(b) In the equilibrium state, we know that δS = 0, write the first order variation δS in
terms of δUA, δVA, and δNA and some thermodynamic parameters and show that

TA = TB PA = PB µA = µB (1)

(c) The change in system entropy up to second order in small quantities is given by the
Taylor expansion of a multi-variable function. Calculate ∆S and then δ2S.
(d) We require that second-order variations be negative for each subsystem. The key
step is that, we can write

δ

(
∂S

∂U

)
=

∂2S

∂U2
δU +

∂2S

∂U∂V
δV +

∂2S

∂U∂N
δN (2)

and the other parameters are the same. Show that

δ2S = δUδ

(
1

T

)
+ δV δ

(
P

T

)
− δNδ

(µ

T

)
(3)

By differentiating and recognizing that TδS = δU + PδV − µδN , we find

δ2S = − 1

T
(δTδS − δPδV + δµδN) (4)

The criterion for stability of the equilibrium state against fluctuations is thus

δTδS − δPδV + δµδN > 0 (5)
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2 Ensemble Theory
2.1 Classical Harmonic Oscillator
Consider N harmonic oscillators with coordinates and momenta {qi, pi}, and subject to
a Hamiltonian

H({qi, pi}) =
N∑
i=1

(
p2i
2m

+
mω2q2i

2

)
(6)

(a) Calculate the entropy S, as a function of the total energy E.
(b) Calculate the energy E, and heat capacity C, as a function of temperature T , and
N .
(c) Find the joint probability density P (p, q) for a single oscillator. Hence calculate the
mean kinetic energy, and mean potential energy for each oscillator.

2.2 Quantum Harmonic Oscillator
Consider N independent quantum oscillators subject to a Hamiltonian

H(ni) =
N∑
i=1

h̄ω

(
ni +

1

2

)
(7)

where ni = 0, 1, 2, · · · is the quantum occupation number for the ith oscillator. (a)
Calculate the entropy S, as a function of the total energy E.
(b) Calculate the energy E, and heat capacity C as function of temperature T , and N .
(c) Find the probability p(n) that a particular oscillator is in its nth quantum level.
(d) Comment on the difference between heat capacities for classical and quantum oscil-
lators.

2.3 Curie Susceptibility
Consider N non-interacting quantized spins in a magnetic field B = Bẑ and at a
temperature T . The work done by the field is given by BMz, with a magnetization
Mz = µ

∑N
i=1mi. For each spin, mi takes only the 2s+1 values −s,−s+1, · · · , s− 1, s.

(a) Calculate the Gibbs partition function Z(T,B).
(b) Calculate the Gibbs free energy G(T,B), and show that for small B,

G(B) = G(0)− Nµ2s(s+ 1)B2

6kBT
+O(B4) (8)

(c) Calculate the zero field susceptibility χ = ∂Mz
∂B |B=0 and show that it satisfies Curie’s

law
χ = c/T (9)

(d) Show that CB − CM = cB2/T 2, where CB and CM are heat capacities at constant
B and M , respectively.
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2.4 Equipartition
Consider a system of particles in which the force between the particles is derivable from
a potential which is a generalized homogeneous function of degree γ, that is

U(λr1, λr2, · · · , λrN ) = λγU(r1, r2, · · · , rN ) (10)

Show that the equation of state for this system is of the form

PT−1+3/γ = f

(
V

N
T−3/γ

)
(11)

where f(x) can be calculated (at least in principle) once U is specified.

2.5 Helmholtz Extensiveness
Making use of the fact that the Helmholtz free energy F (N,V, T ) of a thermodynamic
system is an extensive property of the system, show that

N

(
∂F

∂N

)
V,T

+ V

(
∂F

∂V

)
N,T

= F (12)
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